Ejercicio

Desafío matemático para resolver en menos de 10 segundos: (18 ÷ 3 + 2) × (5² - 4) = ?

Aunque la cuenta parece sencilla, muchas personas cometen errores. ¿Podés resolverla en menos de 10 segundos y obtener el resultado correcto?

 Aplicar correctamente la jerarquía de operaciones es clave para resolver rápidamente expresiones matemáticas sin cometer errores.

 Aplicar correctamente la jerarquía de operaciones es clave para resolver rápidamente expresiones matemáticas sin cometer errores.

El siguiente desafío matemático propone poner a prueba la atención y el razonamiento lógico. La consigna consiste en resolver correctamente esta expresión numérica: : (18 ÷ 3 + 2) × (5² - 4) = ?

Aunque parece sencilla, muchas personas no logran obtener el resultado correcto. El error suele estar en no respetar el orden adecuado en que deben resolverse las operaciones. Este principio, fundamental en matemáticas, marca la diferencia entre una cuenta bien resuelta y una equivocación.

El orden de las operaciones: la clave para no fallar

Para resolver este tipo de expresiones se aplica la regla de jerarquía de operaciones. El orden correcto es el siguiente:

  • Primero, resolver los paréntesis.

  • Luego, realizar potencias y raíces dentro de los paréntesis si las hay.

  • Después, efectuar multiplicaciones y divisiones, de izquierda a derecha.

  • Por último, hacer sumas y restas, también de izquierda a derecha.

No respetar este orden puede llevar a un resultado equivocado incluso en ejercicios que parecen simples.

Paso a paso: cómo resolver la cuenta (18 ÷ 3 + 2) × (5² - 4) = ?

desafio-matematico

Paso 1) Resolver lo que está dentro de cada paréntesis

  • En el primer paréntesis: 18 ÷ 3 + 2

    Primero la división: 18 ÷ 3 = 6

    Luego la suma: 6 + 2 = 8

  • En el segundo paréntesis: 5² - 4

    Primero la potencia: 5² = 25

    Luego la resta: 25 - 4 = 21

Paso 2) Multiplicar los resultados de los paréntesis

Ahora multiplicamos: 8 × 21 = 168

Resultado final: 168